Progetto di Doppia Laurea Magistrale interna Mathematical Engineering/Ingegneria Matematica — Computer Science and Engineering/ Ingegneria Informatica

1 Premessa

Negli anni recenti si è resa evidente la necessità di disporre di figure professionali con competenze marcatamente trasversali, non più inseribili in un unico percorso formativo classico di laurea magistrale.

A partire dalla conferenze di Ateneo del maggio 2011, si sono iniziati a progettare percorsi di laurea congiunti o di doppie lauree per potere mettere in comune competenze complementari, espandendo culturalmente gli attuali percorsi. L'obiettivo generale è sfruttare possibili sinergie e complementarietà tra diversi percorsi di studio per rendere più flessibile l'offerta didattica e meglio adattarla alle dinamiche del mondo del lavoro.

Seguendo le indicazioni del Senato Accademico, per ciascuna Doppia Laurea Magistrale interna verrà predisposto un relativo PSPA nel Regolamento Didattico: tali PSPA deriveranno dai percorsi di studio ipotizzati sotto forma di tabelle nel presente documento.

2 Figura professionale

L'attuale <u>ingegnere matematico</u> laureato magistrale al Politecnico di Milano è un professionista in grado di affrontare l'analisi di sistemi complessi nei quali confluiscono competenze provenienti da differenti discipline, armonizzando solide conoscenze scientifiche di base con la padronanza di metodologie e tecnologie avanzate. L'ingegnere matematico di secondo livello costituisce una figura professionale originale e assai flessibile, con un notevole spettro di conoscenze di base e con la mentalità propria dell'ingegnere, abbinate ad un'ampia conoscenza delle moderne metodologie matematico-numeriche per la modellazione, l'analisi e la risoluzione di problemi complessi di progettazione, controllo e gestione.

Il percorso di studi della laurea magistrale in Mathematical Engineering-Ingegneria Matematica è caratterizzato da tre PSPA, accomunati da due corsi obbligatori (per un totale di 18 CFU) e per il resto fortemente differenziati in funzione della specializzazione desiderata. Gli attuali PSPA sono: Computational Science and Computational Learning, Quantitative Finance e Statistical Learning. In ciascun PSPA un cospicuo numero di crediti è acquisibile in corsi a scelta dello studente per consentirgli di sviluppare specifiche conoscenze in determinate aree tematiche secondo le proprie attitudini e interessi. Infine 12 CFU sono assegnati al lavoro di tesi.

Gli sviluppi dell'informatica e della società dell'informazione hanno avuto uno straordinario impatto sulla realtà produttiva, sociale ed economica degli ultimi anni. L'informatica è infatti diventata fattore determinante della cultura e dell'organizzazione delle moderne imprese e di molte attività sociali, stimolandone la trasformazione e l'innovazione. In questo scenario, profondamente modificato dalla nascita delle nuove tecnologie, si colloca l'ingegnere informatico laureato magistrale al Politecnico di Milano. Si tratta di un ingegnere dotato di una ricca preparazione sul piano culturale e capace di sviluppare e utilizzare i metodi e gli strumenti dell'informatica con sensibilità ingegneristica, per affrontare un amplissimo spettro di applicazioni. I profili professionali che il corso di studi in Ingegneria Informatica consente di costruire sono in ogni caso fra i più richiesti e, nel contempo, fra i più carenti sul mercato del lavoro.

Gli studi sono caratterizzati da un numero limitato di insegnamenti obbligatori; è data ampia facoltà allo studente di comporre un piano di studi personalizzato, utilizzando le materie disponibili nel regolamento didattico degli studi.

L'ingegnere che consegue il doppio diploma in Ingegneria Matematica e Informatica (Mathematical and Computer Science Engineering) vuole acquisire nel corso dei tre anni di studio un curriculum che gli consenta

di avere un forte retroterra nelle discipline proprie dell'Ingegneria dell'informazione, abbinato a solide conoscenze di matematica applicata. Tramite questo percorso, un ingegnere matematico può ampliare la propria preparazione nella scienza informatica, arricchendola sia con nozioni tecnologiche — oggi di vitale importanza per il mondo del lavoro — sia con strumenti algoritmici che permettano l'automazione di processi che oggi sono gestiti da persone umane (ad esempio, il trading e il pricing). Dall'altra parte, un ingegnere informatico può rafforzare la propria preparazione matematica che è oggi la chiave in numerose discipline della scienza informatica, quali ad es. l'ottimizzazione e l'apprendimento automatico (comunemente chiamato "machine learning").

Si ritiene che la figura professionale che ne consegue possa essere accolta con grande favore dal mondo del consulting, che richiede ingegneri in grado di produrre ed utilizzare, con cognizione di causa e spirito critico, modelli sempre più articolati e strumenti di calcolo sempre più efficienti ed avanzati.

3 Linee generali sul percorso congiunto

Il percorso proposto per ottenere una Doppia Laurea Magistrale interna in Ingegneria Matematica e Informatica prevede un totale non inferiore ai 180 CFU, da superare nel corso di tre anni di studio. Lo studente si iscrive alla "prima" LM (Ing. Matematica nel percorso MTM-INF o Ing. Informatica in quello INF-MTM) e segue nei primi due anni un piano di studi compatibile con essa, cioè soddisfacente i vincoli di Statuto dettati dalle rispettive classi di laurea (LM-44 per Ingegneria Matematica; LM-32 per Ingegneria Informatica). Al termine del secondo anno lo studente può decidere se terminare gli studi conseguendo solo il "primo" titolo oppure chiedere di proseguire nel terzo anno. In tal caso egli presenterà un piano di studi per il terzo anno che consiste in ulteriori 60 CFU di insegnamenti.

Analizzando gli attuali regolamenti didattici dei percorsi delle singole lauree, si evidenzia la necessità che uno studente di ognuno dei due percorsi svolga una tesi in un ambito interdisciplinare comune ai due corsi di studio, da sviluppare al termine del secondo anno e durante la frequenza del terzo anno. La "seconda" laurea verrà conseguita una volta superati i 60 CFU aggiuntivi e dopo avere conseguito il titolo di studio della prima laurea.

Si sottolinea il fatto che non si propone la creazione di un nuovo percorso formativo, bensì l'utilizzo di percorsi didattici già esistenti per potere fornire ad un laureando ingegnere informatico le conoscenze ritenute fondamentali per una laurea magistrale in ingegneria matematica (INF - MTM) e ad un laureando ingegnere matematico quelle fondamentali per un ingegnere informatico (MTM - INF). Questi percorsi attingono dagli insegnamenti già esistenti, per recuperare le conoscenze ritenute indispensabili al conseguimento del doppio titolo.

4 Struttura del percorso di studi

Come accennato, si ipotizza di proporre un percorso *ad hoc* per laureandi in ingegneria matematica che vogliano estendere il loro titolo di studio anche all'ingegneria informatica e, viceversa, un percorso per laureandi in ingegneria informatica che vogliano approfondire la loro specializzazione anche nel settore dell'ingegneria matematica.

4.1 Percorso MTM - INF

Il percorso proposto coincide sostanzialmente, per i primi 2 anni, con quello dell'attuale PSPA Statistical Learning del corso di laurea magistrale in Mathematical Engineering-Ingegneria Matematica. Più precisamente, il percorso MTM-INF differisce dal PSPA Statistical Learning per 3 dei 12 corsi previsti; questi 3 corsi devono essere inseriti nel piano di studi per garantire allo studente il conseguimento senza debiti della seconda LM in Ingegneria Informatica. Nel terzo anno proposto lo studente recupera i contenuti degli insegnamenti di base dell'ingegneria informatica nel SSD ING-INF/05, e completa la sua formazione con corsi progettuali e/o avanzati. Con una tesi interdisciplinare da 12 CFU si ha un totale di 180 CFU per il conseguimento della doppia laurea.

4.1.1 PSPA MTM (Statistical Learning) – INF (Computer Science and Engineering)

I anno – MTM (PSPA Statistical Learning)				
Codice	SSD	Insegnamento	Sem	CFU
095958	MAT/05	Real and functional analysis	1	8
052496	ING-INF/05	Algorithms and parallel computing	1	10
054074	MAT/06	Stochastic dynamical models	1	8
080931	MAT/01	Algebra and mathematical logic ¹	1	5
	MAT/02			
086067	ING-INF/05	Algoritmi e principi dell'informatica ²	2	10
052742	SECS-S/01	Applied statistics	2	10
095972	MAT/09	Optimization ³	2	8
		Totale CFU		59

¹ al posto di un insegnamento del Gruppo FREE

³ insegnamento del Gruppo MTM

II anno -	II anno - MTM (PSPA Statistical Learning)			
Codice	SSD	Insegnamento	Sem	CFU
052502	MAT/06 SECS-S/01	Bayesian statistics	1	10
052503	MAT/05	Game theory ¹	1	8
051587	ING-INF/05	Model identification and data analysis	1	10
055632	ING-INF/05	Data mining and text mining ²	2	5
054756	ING-INF/05	Economics and computation ³	2	6
093735	MAT/09	Graph optimization ⁴	2	5
097683	ING-INF/05	Machine learning ²	2	5
097690		Final work		12
		Totale CFU		61

¹ insegnamento del Gruppo MTM

² al posto di un insegnamento del Gruppo ING

² insegnamento del Gruppo STAT

³ insegnamento del Gruppo FREE

III anno –	INF (PSPA Comp	outer Science and Engineering)		
Codice	SSD	Insegnamento	Sem	CFU
085885	ING-INF/05	Ingegneria del software B	1	10
085887	ING-INF/05	Basi di dati 1	1	5
089182	ING-INF/05	Formal languages and compilers	1	5
054443	ING-INF/05	Software engineering 2	1	5
088949	ING-INF/05	Advanced computer architectures	2	5
055633	ING-INF/05	Computer security – UIC 587	2	5
095898	ING-INF/05	Computing infrastructures	2	5
095903	ING-INF/05	Advanced operating systems (5 CFU)	1	20
089214	ING-INF/05	Artificial intelligence (5 CFU)	1	
089169	ING-INF/05	Autonomous agents and multiagent systems (5 CFU)	1	
089183	ING-INF/05	Data bases 2 (5 CFU)	1	
090950	ING-INF/05	Distributed systems (5 CFU)	1	
085877	ING-INF/05	Reti logiche (5 CFU)	1	
052536	ING-INF/05	Soft computing (5 CFU)	1	
095947	ING-INF/05	Cryptography and architectures for computer security (5 CFU)	2	
		Totale CFU		60

4.2 Percorso INF - MTM

La proposta si rivolge agli allievi immatricolatisi in Computer Science and Engineering/Ingegneria Informatica e che si inquadrano nel PSPA Computer Science and Engineering. Il percorso proposto coincide in larga parte con quello del PSPA citato, se non per la presenza di alcuni corsi obbligatori al posto di pacchetti di corsi opzionali del PSPA standard. Attraverso un opportuno percorso di 60 CFU al terzo anno, lo studente completa le conoscenze ritenute fondamentali per la laurea magistrale in Mathematical Engineering-Ingegneria Matematica. Con una tesi interdisciplinare da 20 CFU si ha un totale di 181 CFU per il conseguimento della doppia laurea.

4.2.1 PSPA INF (Computer Science and Engineering) - MTM (Statistical Learning)

I anno INF (PSPA Computer Science and Engineering)				
Codice	SSD	Insegnamento	Sem	CFU
089183	ING-INF/05	Data bases 2	1	5
089182	ING-INF/05	Formal languages and compilers	1	5
088983	MAT/09	Foundations of operations research	1	5
054443	ING-INF/05	Software engineering 2	1	5
085925	MAT/05	Analisi matematica III	1	5

⁴ al posto di un insegnamento del Gruppo FREE

051587	ING-INF/04	Model identification and data analysis	2	10
088949	ING-INF/05	Advanced computer architectures	2	5
055633	ING-INF/05	Computer security – UIC 587	2	5
095898	ING-INF/05	Computing infrastructures	2	5
054069	SECS-S/01	Inferenza statistica	2	5
095903	ING-INF/05	Advanced operating systems (5 CFU)	1	
089214	ING-INF/05	Artificial intelligence (5 CFU)	1	
089169	ING-INF/05	Autonomous agents and multiagent systems (5 CFU)	1	5
052536	ING-INF/05	Soft computing (5 CFU)	1	
095947	ING-INF/05	Cryptography and architectures for computer security (5 CFU)	2	
		Totale CFU		60

II anno INF (PSPA Computer Science and Engineering)				
Codice	SSD	Insegnamento	Sem	CFU
090950	ING-INF/05	Distributed systems	1	5
088976	MAT/05	Game theory	1	5
052742	SECS-S/01	Applied statistics	2	10
055632	ING-INF/05	Data mining and text mining	2	5
054445	ING-INF/05	Economics and computation	2	5
097683	ING-INF/05	Machine learning	2	5
095903	ING-INF/05	Advanced operating systems (5 CFU)	1	
089214	ING-INF/05	Artificial intelligence (5 CFU)	1	
089169	ING-INF/05	Autonomous agents and multiagent systems (5 CFU)	1	5
052536	ING-INF/05	Soft computing (5 CFU)	1	
095947	ING-INF/05	Cryptography and architectures for computer security (5 CFU)	2	
089254		Final work		20
		Totale CFU		60

III anno - MTM (PSPA Statistical Learning)				
Codice	SSD	Insegnamento	Sem	CFU
052496	ING-INF/05	Algorithms and parallel computing	1	10
052502	MAT/06 +SECS-S/01	Bayesian statistics	1	10
095958	MAT/05	Real and functional analysis	1	8
054074	MAT/06	Stochastic dynamical models	1	8
052488	MAT/08	Matematica numerica	2	10
094892	MAT/05	Metodi analitici delle E.D.P.	2	5
095903	ING-INF/05	Advanced operating systems (5 CFU)	1	
089214	ING-INF/05	Artificial intelligence (5 CFU)	1	
089169	ING-INF/05	Autonomous agents and multiagent systems (5 CFU)	1	10
052536	ING-INF/05	Soft computing (5 CFU)	1	
095947	ING-INF/05	Cryptography and architectures for computer security (5 CFU)	2	
		Totale CFU		61

5 Accessi

La domanda di ammissione al percorso di Doppia Laurea può essere presentata dagli studenti iscritti al Politecnico di Milano nell'Anno Accademico 2019-20 (autumn intake) ad uno dei seguenti programmi di studio:

- Laurea Magistrale in Ingegneria Matematica (percorso Statistical Learning)
- Laurea Magistrale in Ingegneria Informatica (percorso Computer Science and Engineering)

Si ipotizza che l'adesione al percorso di doppia laurea possa avvenire da parte dello studente al più tardi al termine del secondo anno, senza soluzione di continuità tra il termine del percorso relativo alla prima laurea magistrale e la prosecuzione degli studi per il doppio titolo. In questo contesto, lo svolgimento della tesi di laurea multidisciplinare (da svolgersi tra la fine del secondo anno ed il terzo) vuole anche essere un "ponte di collegamento" che potrà supportare l'allievo nella fase di inserimento nel nuovo contesto della seconda laurea.

L'ammissione al percorso di Doppia Laurea verrà valutata da una commissione composta da docenti di entrambi i Corsi di Studio. Tale valutazione avviene per titoli fino ad un punteggio massimo di 100/100. Per accedere al percorso di Doppia Laurea è necessario accumulare un punteggio minimo pari a 75/100. Nello specifico, i titoli richiesti per la valutazione della domanda di ammissione al percorso di Doppia Laurea sono:

- 1. Lettera di motivazione (fino a 10 punti)
- 2. Votazione finale della Laurea Triennale (fino a 25 punti)
- 3. Curriculum Studiorum della Laurea Triennale, inclusi il piano degli studi, completo delle votazioni conseguite, e il sommario della Tesi (fino a 25 punti)
- 4. Curriculum Studiorum programmato della Laurea Magistrale di provenienza, completo delle votazioni degli esami già sostenuti e la proposta del progetto di tesi multidisciplinare (fino a 35 punti)
- 5. Curriculum Vitae con chiara indicazione delle competenze pertinenti, oltre a quelle già incluse nei Curricula Studiorum, le esperienze professionali, ... (fino a 5 punti)

Le domande di partecipazione al programma di doppia laurea interna dovranno essere inviate via mail al prof. Roberto Lucchetti (roberto.lucchetti@polimi.it) e in cc alla Prof. Anna Paganoni (anna.paganoni@polimi.it) dagli studenti iscritti alla LM in Ingegneria Matematica/Mathematical Engineering, o al prof. Gianpaolo Cugola (gianpaolo.cugola@polimi.it) dagli studenti iscritti alla LM in Ingegneria Informatica/Computer Science and Engineering. Indicare come oggetto della mail "Domanda di partecipazione al programma di doppia laurea in ingegneria matematica e informatica". Le domande, corredate in allegato dalla documentazione sopra elencata, dovranno essere inviate entro il 22/01/2021. La pubblicazione degli esiti delle domande sarà fatta entro il 7/02/2021.